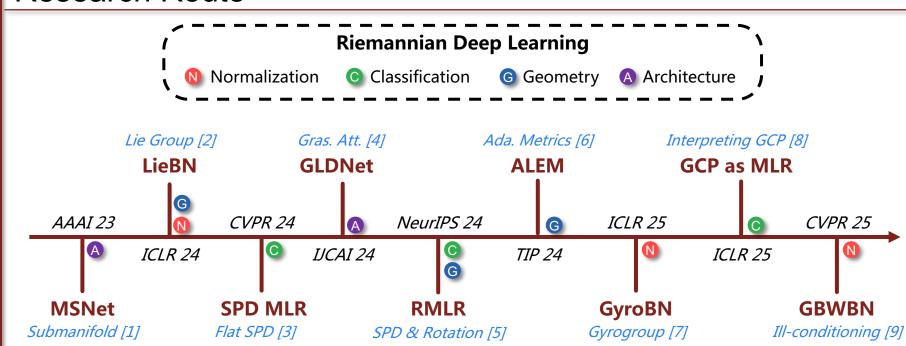
Riemannian Deep Learning: Normalization and Classification

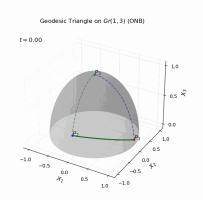
Ziheng Chen
Supervisor: Nicu Sebe
University of Trento
MHUG Lab

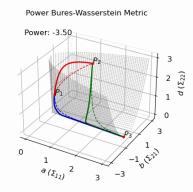
Research Route

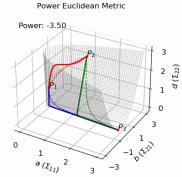


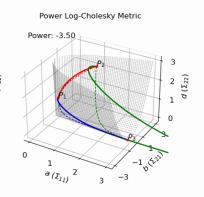
- [1] Chen Z, et al. Riemannian local mechanism for SPD neural networks. AAAI 2023
- [2] Chen Z, et al. A Lie group approach to Riemannian batch normalization. ICLR 2024
- [3] Chen Z, et al. Riemannian multinomial logistics regression for SPD neural networks. CVPR 2024
- [4] Wang R, Hu C, Chen Zt, et al. A Grassmannian manifold self-attention network for signal classification. IJCAI 2024
- [5] Chen Z, et al. Adaptive Log-Euclidean metrics for SPD matrix learning. IEEE TIP 2024.
- [6] Chen Z, et al. RMLR: Extending Multinomial Logistic Regression into General Geometries. NeurIPS 2024
- [7] Chen Z, et al. Gyrogroup Batch Normalization. ICLR 2025
- [8] Chen Z, et al. Understanding matrix function normalizations in covariance pooling through the lens of Riemannian geometry. ICLR 2025
- [9] Wang, R, Jin, S, Chen, Zt, et al. Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry. CVPR 2025.

Backgrounds





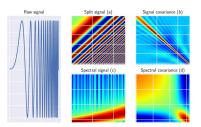




Manifolds differ with the Euclidean space

MOTIVATIONS

Radar Classification

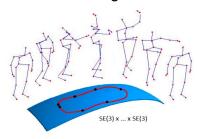


Brooks et al., 2020

Medical

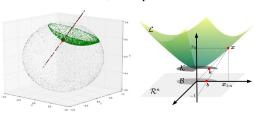
Chakraborty et al., 2020

Action Recognition



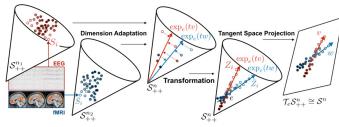
Vemulapalli, Raviteja 2014

NLP, Graph ...



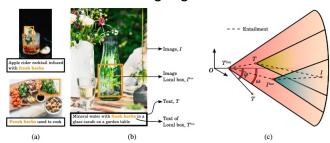
Ganea et al., 2018 Dai et al., 2021

Brain-Computer Interfaces



Ju et al., 2024

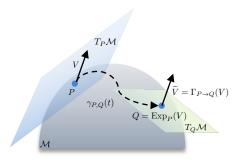
Vision-Language Models



Pal et al., 2025

EXAMPLES

Examples in Machine Learning



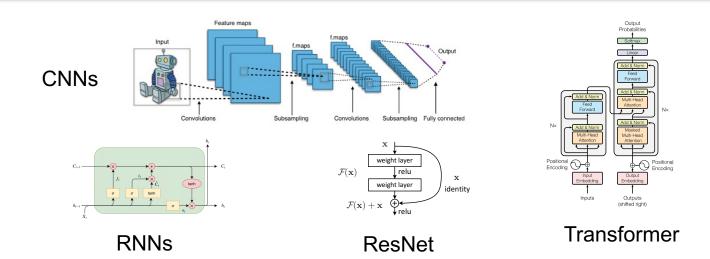
Manifold: Locally Euclidean

(в	(θ, α, β) -EM (θ, α, β) -LEM	2θ-BWM
$(\theta, \alpha,$	$(oldsymbol{eta})$ -AIM $O(n)$ -Invariant Metric	s
	Riemannian Metrics on SPD Manifolds	θ-LCM

There could be multiple metrics on a manifold

Category	Name	Definition
	Symmetric Positive Definite (SPD)	$\mathcal{S}^n_{++} = \{X \in \mathbb{R}^{n \times n} : X = X^T, X \succ 0\}$
	Symmetric Positive Semi-Definite (SPSD)	$\mathcal{S}^n_+ = \{X \in \mathbb{R}^{n \times n} : X = X^T, X \succeq 0\}$
Matrix Manifolds	General Linear Group	$\operatorname{GL}(n) = \{ A \in \mathbb{R}^{n \times n} : \det(A) \neq 0 \}$
	Orthogonal Group	$\mathrm{O}(n) = \{Q \in \mathbb{R}^{n \times n} : Q^TQ = I\}$
	Special Orthogonal Group	$\mathrm{SO}(n) = \{Q \in \mathbb{R}^{n \times n} : Q^TQ = I, \det(Q) = 1\}$
	Special Euclidean Group	$\mathrm{SE}(n) = \{(R,t): R \in \mathrm{SO}(n), t \in \mathbb{R}^n\}$
	Stiefel	$\mathrm{St}(p,n) = \{X \in \mathbb{R}^{n \times p} : X^TX = I_p\}$
	Grassmannian (ONB Perspective)	$\operatorname{Gr}(p,n) = \{[U]: [U]:=\{\widetilde{U} \in \operatorname{St}(p,n) \mid \widetilde{U} = UR, R \in \operatorname{O}(p)\}$
	Grassmannian (Projector Perspective)	$\widetilde{\mathrm{Gr}}(p,n)=\{P\in\mathcal{S}^n: P^2=P, \mathrm{rank}(P)=p\}$
	Oblique	$Oblique(n,p) = \{X \in \mathbb{R}^{n imes p} : \ X_i\ = 1, orall i = 1, \ldots, p\}$
	Constant Curvature Space (CCS)	$\mathcal{M}_{K} = \begin{cases} \mathbb{S}_{K}^{n} = \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle = \frac{1}{K} \}, & K > 0 \\ \mathbb{H}_{K}^{n} = \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle_{L} = \frac{1}{K} \}, & K < 0 \\ \mathbb{R}^{n}, & K = 0 \end{cases}$
Vector Manifolds	Projected Hypersphere	$\mathbb{D}_K^n = \{x \in \mathbb{R}^n : \langle x, x \rangle = \frac{1}{K} \}, \text{ for } K > 0$
vector ivialilioids	Poincaré Ball	$\mathbb{P}^n_K = \{x \in \mathbb{R}^n : \langle x, x \rangle < -\frac{1}{K} \}, \text{ for } K < 0$
	Klein Model	$\mathbb{K}^n_K = \{x \in \mathbb{R}^n : \langle x, x \rangle < -\frac{1}{K} \}, \text{ for } K < 0$
	Half-Space Model	$\mathbb{HS}_K^n = \{x \in \mathbb{R}^n : x_n > \sqrt{-1/\kappa}\}, \text{ for } K < 0$
	Upper Hemisphere Model	$\mathbb{SU}_K^n = \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle = -\frac{1}{K}, x_0 > 0\}, \text{ for } K < 0$

DEEP LEARNING: FROM EUCLIDEAN TO RIEMANNIAN

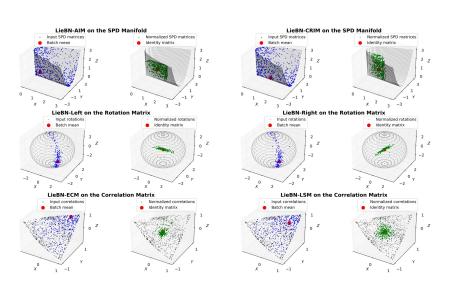


Basic building blocks

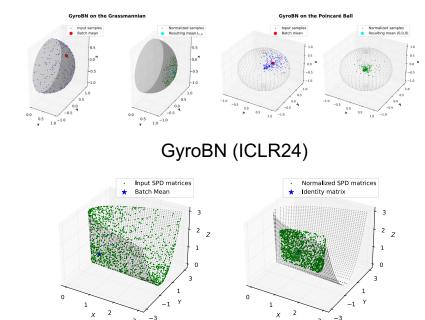
- Transformation
- Activation
- Normalization
- Classification

Riemannian Spaces

Overview: Riemannian Normalization



LieBN (ICLR24) LieBN-Extension (PAMI; under review)



GBWMBN for ill-conditioning (CVPR25)

Chen Z, et al. LieBN: Batch Normalization over Lie Groups. under review

Chen Z, et al. Gyrogroup Batch Normalization. ICLR 2025

REVISITING BATCH NORMALIZATION

Euclidean Normalization: facilitating network training by controlling mean and variance

$$\forall i \le N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

TABLE 2: Summary of some representative RBN methods.

Methods	Involved Statistics	Controllable Mean	Controllable Variance	Geometries	
SPDBN [32, Alg. 1]	Mean	/	N/A	SPD manifolds under AIM	
SPDBN [57, Alg. 1]	Mean+Variance	✓	✓	SPD manifolds under AIM	
SPDDSMBN [33]	Mean+Variance	✓	✓	SPD manifolds under AIM	
ManifoldNorm [34, Algs. 1-2]	Mean+Variance	X	X	Riemannian homogeneous space	
ManifoldNorm [34, Algs. 3-4]	Mean+Variance	✓	✓	A specific Lie group structure and distance	
RBN [35, Alg. 2]	Mean+Variance	×	×	Geodesically complete manifolds	
LieBN (Ours)	Mean+Variance	✓	✓	General Lie groups	

- All the previous RBN methods fail to control statistics in a principled manner
- Several manifold manifold-valued features form Lie groups

Chen Z, et al. A Lie group approach to Riemannian batch normalization. ICLR 2024

LIE STRUCTURES

Lie Groups

Examples

Definition 2.1 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation \odot such that $m(x,y)\mapsto x\odot y$ and $i(x)\mapsto x_\odot^{-1}$ are both smooth, where x_\odot^{-1} is the group inverse.

Definition 2.2 (Left-invariance). A Riemannian metric g over a Lie group $\{G, \odot\}$ is left-invariant, if for any $x, y \in G$ and $V_1, V_2 \in T_x \mathcal{M}$,

$$g_y(V_1, V_2) = g_{L_x(y)}(L_{x*,y}(V_1), L_{x*,y}(V_2)), \tag{1}$$

where $L_x(y) = x \odot y$ is the left translation by x, and $L_{x*,y}$ is the differential map of L_x at y.

Let $\{w_{1...N}\}$ be weights satisfying a convexity constraint, i.e., $\forall i, w_i > 0$ and $\sum_i w_i = 1$. The weighted Fréchet mean (WFM) of a set of SPD matrices $\{P_{i...N}\}$ is defined as

WFM({
$$w_i$$
}, { P_i }) = $\underset{S \in \mathcal{S}_{++}^n}{\operatorname{argmin}} \sum_{i=1}^N w_i d^2(P_i, S)$, (5)

Table 1: Lie group structures and the associated Riemannian operators on SPD manifolds.

Metric	(α, β) -LEM	(lpha,eta)-AIM	LCM
$g_P(V,W)$	$\langle \mathrm{mlog}_{*,P}(V), \mathrm{mlog}_{*,P}(W) \rangle^{(\alpha,\beta)}$	$\langle P^{-1}V,WP^{-1}\rangle^{(\alpha,\beta)}$	$\sum_{i>j} V_{ij} W_{ij} + \sum_{j=1}^{n} V_{jj} W_{jj} L_{jj}^{-2}$
d(P,Q)	$\ \mathrm{mlog}(P) - \mathrm{mlog}(Q)\ ^{(\alpha,\beta)}$	$\left\ \mathrm{mlog}\left(Q^{-\frac{1}{2}}PQ^{-\frac{1}{2}}\right)\right\ ^{(\alpha,\beta)}$	$\ \psi_{\mathrm{LC}} \circ \mathrm{Chol}(P) - \psi_{\mathrm{LC}} \circ \mathrm{Chol}(Q)\ _{\mathrm{F}}$
$Q\odot P$	$\operatorname{mexp}(\operatorname{mlog}(P) + \operatorname{mlog}(Q))$	$KPK^{ op}$	$\operatorname{Chol}^{-1}(\lfloor L+K \rfloor + \mathbb{KL})$
$FM(\{P_i\})$	$\operatorname{mexp}\left(\frac{1}{n}\sum_{i}\operatorname{mlog}P_{i}\right)$	Karcher Flow	$\psi_{ ext{LC}}^{-1}\left(rac{1}{n}\sum_{i}\psi_{ ext{LC}}(P_{i}) ight)$
$\operatorname{Log}_P Q$	$(\mathrm{mlog}_{*,P})^{-1}\left[\mathrm{mlog}(Q)-\mathrm{mlog}(P)\right]$	$P^{rac{1}{2}} \operatorname{mlog} \left(P^{rac{-1}{2}} Q P^{rac{-1}{2}} ight) P^{rac{1}{2}}$	$(\operatorname{Chol}^{-1})_{*,L} \left[\lfloor K \rfloor - \lfloor L \rfloor + \mathbb{L} \operatorname{Dlog}(\mathbb{L}^{-1}\mathbb{K}) \right]$
Invariance	Bi-invariance	Left-invariance	Bi-invariance

Table 8: The associated Riemannian operators on Rotation matrices.

Operators	$\mathrm{d}^2(R,S)$	$\operatorname{Log}_I R$	$\operatorname{Exp}_I(A)$	$\gamma_{(R,S)}(t)$	FM
Expression	$\left\ \mathrm{mlog} \left(R^{\top} S \right) \right\ _{\mathrm{F}}^2$	mlog(R)	mexp(A)	$R \operatorname{mexp}(t\operatorname{mlog}(R^\top S))$	Manton (2004, Alg. 1)

CONSTRUCTION

Euclidean BN

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$
• Gaussian
• Mean and variance
• Centering, biasing,

- Gaussian
- Centering, biasing, scaling

LieBN

 $p(X \mid M, \sigma^2) = k(\sigma) \exp\left(-\frac{d(X, M)^2}{2\sigma^2}\right),$ Gaussian on manifolds:

Centering to the neutral element $E: \forall i \leq N, \bar{P}_i \leftarrow L_{M_{\bigcirc}^{-1}}(P_i),$

Scaling the dispersion: $\forall i \leq N, \hat{P}_i \leftarrow \operatorname{Exp}_E \left[\frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i) \right],$

Biasing towards parameter $B \in \mathcal{M}$: $\forall i \leq N, \tilde{P}_i \leftarrow L_B(\hat{P}_i)$,

Question

Can they normalize sample statistics?

14 LieBN GyroBN **GBWMBN** Extension

PROPERTIES

Proposition 4.1 (Population). \square Given a random point X over \mathcal{M} , and the Gaussian distribution $\mathcal{N}(M, v^2)$ defined in Eq. (12), we have the following properties for the population statistics:

- 1. (MLE of M) Given $\{P_{i...N} \in \mathcal{M}\}$ i.i.d. sampled from $\mathcal{N}(M, v^2)$, the maximum likelihood estimator (MLE) of M is the sample Fréchet mean.
- 2. (Homogeneity) Given $X \sim \mathcal{N}(M, v^2)$ and $B \in \mathcal{M}$, $L_B(X) \sim \mathcal{N}(L_B(M), v^2)$

Proposition 4.2 (Sample). \square Given N samples $\{P_{i...N} \in \mathcal{M}\}$, denoting $\phi_s(P_i) =$ $\operatorname{Exp}_{E}[s\operatorname{Log}_{E}(P_{i})]$, we have the following properties for the sample statistics:

Homogeneity of the sample mean:
$$FM\{L_B(P_i)\} = L_B(FM\{P_i\}), \forall B \in \mathcal{M},$$
 (16)

Controllable dispersion from
$$E$$
:
$$\sum_{i=1}^{N} w_i d^2(\phi_s(P_i), E) = s^2 \sum_{i=1}^{N} w_i d^2(P_i, E), \quad (17)$$

where $\{w_{1...N}\}\$ are weights satisfying a convexity constraint, i.e., $\forall i, w_i > 0$ and $\sum_i w_i = 1$.

Yes

15 LieBN **GBWMBN** Extension GvroBN

ALGORITHM


```
Algorithm 1: Lie Group Batch Normalization (LieBN) Algorithm
                  : A batch of activations \{P_{1...N} \in \mathcal{M}\}, a small positive constant \epsilon, and
Input
                    momentum \gamma \in [0, 1]
                    running mean M_r = E, running variance v_r^2 = 1,
                    biasing parameter B \in \mathcal{M}, scaling parameter s \in \mathbb{R}/\{0\},
                  : Normalized activations \{\tilde{P}_{1...N}\}
Output
if training then
     Compute batch mean M_b and variance v_b^2 of \{P_{1...N}\};
Update running statistics M_r \leftarrow \text{WFM}(\{1-\gamma,\gamma\},\{M_r,M_b\}), v_r^2 \leftarrow (1-\gamma)v_r^2 + \gamma v_b^2;
end
if training then M \leftarrow M_b, v^2 \leftarrow v_b^2;
else M \leftarrow M_r, v^2 \leftarrow v_r^2;
for i \leftarrow 1 to N do
     Centering to the neutral element E: \bar{P}_i \leftarrow L_{M_{-}^{-1}}(P_i)
     Scaling the dispersion: \hat{P}_i \leftarrow \operatorname{Exp}_E \left[ \frac{s}{\sqrt{v^2 + \epsilon}} \operatorname{Log}_E(\bar{P}_i) \right]
     Biasing towards parameter B: \tilde{P}_i \leftarrow L_B(\hat{P}_i)
end
```

A natural extension of the Euclidean BN:

Proposition D.1. The LieBN algorithm presented in Alg. I is equivalent to the standard Euclidean BN when $\mathcal{M} = \mathbb{R}^n$, both during the training and testing phases.

EXPERIMENTS

Radar

Skeleton

EEG

(a) Radar dataset.

Method	SPDNet	SPDNetBN	AIM-(1)	LEM-(1)	LCM-(1)	LCM-(-0.5)
Fit Time (s)	0.98	1.56	1.62	1.28	1.11	1.43
Mean±STD	93.25±1.10	94.85±0.99	95.47±0.90	94.89±1.04	93.52±1.07	94.80±0.71
Max	94.4	96.13	96.27	96.8	95.2	95.73

(b) HDM05 and FPHA datasets.

M	Method		SPDNetBN	AIM-(1)	LEM-(1)	LCM-(1)	AIM-(1.5)	LCM-(0.5)
HDM05	Fit Time (s)	0.57	0.97	1.14	0.87	0.66	1.46	1.01
	Mean±STD	59.13±0.67	66.72±0.52	67.79±0.65	65.05±0.63	66.68±0.71	68.16±0.68	70.84±0.92
	Max	60.34	67.66	68.75	66.05	68.52	69.25	72.27
FPHA	Fit Time (s)	0.32	0.62	0.80	0.55	0.39	1.03	0.65
	Mean±STD	85.59±0.72	89.33±0.49	89.70±0.51	86.56±0.79	77.64±1.00	90.39±0.66	86.33±0.43
	Max	86	90.17	90.5	87.83	79	92.17	87

(a) Inter-session classification

Method	Fit Time (s)	Mean±STD
SPDDSMBN	0.16	54.12±9.87
AIM-(1) LEM-(1) LCM-(1)	0.16 0.13 0.10	55.10±7.61 54.95±10.09 51.54±6.88
LCM-(0.5)	0.15	53.11±5.65

(b) Inter-subject classification

Method	Fit Time (s)	Mean±STD
SPDDSMBN	7.74	50.10±8.08
AIM-(1) LEM-(1)	6.94 4.71	50.04±8.01 50.95±6.40
AIM-(-0.5)	3.59 8.71	51.86±4.53 53.97±8.78

Table 9: Results of LieNet with or without LieBN on the G3D dataset.

	G3D				
Methods	Mean±STD	Max			
LieNet	87.91±0.90	89.73			
LieNetLieBN	88.88±1.62	90.67			

SO(3)

LIEBN: FROM LEFT-INVARIANCE TO RIGHT-INVARIANCE

$$g_y^{\rm R}(V_1, V_2) = g_{{\rm R}_x(y)}^{\rm R}({\rm R}_{x*,y}(V_1), {\rm R}_{x*,y}(V_2)), \text{ with } {\rm R}_x(y) = y \odot x$$

centering to $E: \bar{P}_i \leftarrow \mathbf{R}_{M_{\odot}^{-1}}(P_i),$ biasing towards $B: \tilde{P}_i \leftarrow \mathbf{R}_B(\hat{P}_i).$ **Proposition 4.5.** Given a random point $X \sim \mathcal{N}(M, v^2)$ over $\{\mathcal{M}, g^{\mathrm{R}}\}$, $B \in \mathcal{M}$, and N samples $\{P_{i...N}\}$ over \mathcal{M} , we have

- 1) Gaussian homogeneity: $R_B(X) \sim \mathcal{N}(R_B(M), v^2)$;
- 2) Sample homogeneity: $FM\{R_B(P_i)\}=R_B(FM\{P_i\})$.

LieBN

LIEBN: FROM LEFT-INVARIANCE TO RIGHT-INVARIANCE

19

Theorem 5.3. Given any SPD matrices P, Q and tangent vector $V \in T_P \mathcal{S}_{++}^n$, the Riemannian operators on $\{\mathcal{S}_{++}^n, g^{CRI}\}$ are

$$g_P^{\text{CRI}}(V, V) = \left(\left\| \left(L(L^{-1}VL^{-\top})_{\frac{1}{2}}L^{-1} \right)_{\text{Sym}} \right\|^{(\alpha, \beta)} \right)^2$$
 (20)

$$d(P,Q) = \left\| \log \left(\widetilde{Q}^{-\frac{1}{2}} \widetilde{P} \widetilde{Q}^{-\frac{1}{2}} \right) \right\|^{(\alpha,\beta)}, \tag{21}$$

$$\operatorname{Exp}_{P}(V) = \left(\operatorname{Exp}_{\widetilde{P}}^{\operatorname{AI}}\left(-\bar{V}\right)\right)_{\odot^{\operatorname{AI}}}^{-1},\tag{22}$$

$$\operatorname{Log}_{P}(Q) = -\left(LL^{\top} \left(L\widetilde{V}L^{\top}\right)_{\frac{1}{2}}^{\top}\right)_{\operatorname{Sym}},\tag{23}$$

where L is the Cholesky factor of $P = LL^{\top}$, $(\cdot)_{\odot^{\mathrm{AI}}}^{-1}$ is the group inverse, \widetilde{Q} and \widetilde{P} are the group inverses of P and Q, $\overline{V} = \left((L^{-1}VL^{-\top})_{\frac{1}{2}} L^{-1}L^{-\top} \right)_{\mathrm{Sym}}$, and $\widetilde{V} = \mathrm{Log}_{\widetilde{P}}^{\mathrm{AI}} \left(\widetilde{Q} \right)$. Here, $(X)_{\mathrm{Sym}} = X + X^{\top}$, $\forall X \in \mathbb{R}^{n \times n}$ denotes symmetrization, and $(\cdot)_{\frac{1}{2}}$ as its inverse map, namely $(X)_{\frac{1}{2}} = \lfloor X \rfloor + \frac{1}{2}\mathbb{X}$.

First non-trivial right-invariant SPD metric

from LieBN import LieBNSPD, LieBNRot, LieBNCor from LieBN.Geometry.SPD import SPDMatrices from LieBN.Geometry.Rotations import RotMatrices
from LieBN.Geometry.Correlation import Correlation
<pre># ==== SPD matrices ==== P_spd = SPDMatrices(n=5).random(4, 2, 5, 5) # Implemented metrics: LEM, ALEM, LCM, AIM, CRIM liebn_spd = LieBNSPD([2, 5, 5], metric="LEM", batchdim=[0]) output_spd = liebn_spd(P_spd)</pre>
<pre># ==== SO(3) matrices ==== P_so3 = RotMatrices().random(4, 2, 3, 3, 3) # LieBN-Left if is_left else -Right liebn_so3 = LieBNRot([3, 3, 3], batchdim=[0, 1], is_left=False) output_so3 = liebn_so3(P_so3)</pre>
<pre># ==== Correlation matrices ==== P_cor = Correlation(n=5).random(4, 2, 5, 5) # Implemented metrics: ECM, LECM, OLM, LSM liebn_cor = LieBNCor([2, 5, 5], metric="ECM", batchdim=[0]) output_cor = liebn_cor(P_cor)</pre>

Demo of the released toolbox

Manifold		SPD Manifold					Correlation	n Manifold	
Metric	AIM CRIM LEM LCM		LCM	Bi-invariant Metric	ECM	LECM	LSM	OLM	
Invariance	Left	Right	Bi	Bi	Ві	Bi	Bi	Bi	Bi
Comutativity	×	×	⋖	<	×	⋞	⋖	⋖	⋞
LieBN Type	Left	Right	Left=Right	Left=Right	Left & Right	Left=Right	Left=Right	Left=Right	Left=Right
Fréchet Mean	Karcher Flow	Karcher Flow	Closed Form	Closed Form	Karcher Flow	Closed Form	Closed Form	Closed Form	Closed Form

Nine implementations

EXPERIMENTS

Visualization (at a different scale)

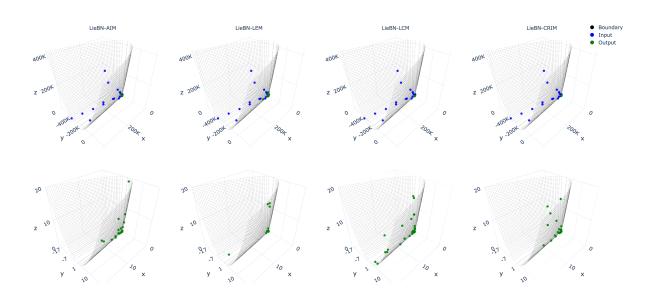


TABLE 9: Results of LieNet with or without rotation LieBN.

A 10 (10 (10 (10 (10 (10 (10 (10 (10 (10	G3D	HDM0)5	NTU60
Method	Mean±STD	Max Mean±STD	Max 2I	Blocks 3Blocks
LieNet	87.91±0.90	89.73 76.92±1.27	79.11	62.4 60.91
LieNetLieBN-Left LieNetLieBN-Right	88.88±1.62 88.12±1.12	90.67 78.89±1.07 90.3 79.39±1.13		63.51 62.62 63.6 62.72

TABLE 10: Results of SPDNet with or without correlation LieBN under different invariant metrics.

		SPDNetLieBN-Cor				
Dataset	SPDNet	ECM	LECM	OLM	LSM	
HDM05 FPHA	59.13±0.67 85.59±0.72	65.37 ± 1.07 87.20 ± 0.12	61.35 ± 0.34 87.03 ± 0.32	60.33 ± 0.12 86.80 ± 0.12	$60.00 \pm 0.27 \\ 86.77 \pm 0.29$	

RBN: From Lie Groups to Gyro Groups

How about manifold without Lie group structures?

- Grassmannian
- Hyperbolic

Method	Controllable Statistics	Applied Geometries	Incorporated by GyroBN
SPDBN (Brooks et al., 2019)	M	SPD manifolds under AIM	✓
SPDBN (Kobler et al., 2022b)	M+V	SPD manifolds under AIM	✓
SPDDSMBN (Kobler et al., 2022a)	M+V	SPD manifolds under AIM	✓
ManifoldNorm (Chakraborty, 2020, Algs. 1-2)	N/A	Riemannian homogeneous space	×
ManifoldNorm (Chakraborty, 2020, Algs. 3-4)	M+V	Matrix Lie groups under the distance $d(X,Y) = \ \text{mlog}(X^{-1}Y)\ $	✓
RBN (Lou et al., 2020, Alg. 2)	N/A	Geodesically complete manifolds	X
LieBN (Chen et al., 2024b)	M+V	General Lie groups	✓
GyroBN	M+V	Pseudo-reductive gyrogroups with gyro isometric gyrations	N/A

Generality: incorporating several previous RBN methods

LieBN GyroBN **GBWMBN** Extension

Chen Z, et al. Gyrogroup Batch Normalization. ICLR 2025

GYRO STRUCTURES

22

Gyrogroups

- Non-associative group
- Gyrations

Gyro Structures

Extends the vector structures

Definition 2.1 (Gyrogroups (Ungar, 2009)). Given a nonempty set G with a binary operation $\oplus: G \times G \to G, \{G, \oplus\}$ forms a gyrogroup if its binary operation satisfies the following axioms for any $a, b, c \in G$:

- (G1) There is at least one element $e \in G$ called a left identity (or neutral element) such that $e \oplus a = a$.
- (G2) There is an element $\ominus a \in G$ called a left inverse of a such that $\ominus a \oplus a = e$.
- (G3) There is an automorphism $gyr[a, b]: G \to G$ for each $a, b \in G$ such that

$$a \oplus (b \oplus c) = (a \oplus b) \oplus \text{gyr}[a, b]c$$
 (Left Gyroassociative Law). (1)

The automorphism $\operatorname{gyr}[a,b]$ is called the gyroautomorphism, or the gyration of G generated by a,b. (G4) Left reduction law: $\operatorname{gyr}[a,b] = \operatorname{gyr}[a \oplus b,b]$.

As shown by Nguyen & Yang (2023), given P, Q and R in a manifold \mathcal{M} and $t \in \mathbb{R}$, the gyro structures can be defined as:

Gyro addition:
$$P \oplus Q = \operatorname{Exp}_P(\operatorname{PT}_{E \to P}(\operatorname{Log}_E(Q)))$$
, (3)

Gyro scalar product:
$$t \odot P = \operatorname{Exp}_E(t \operatorname{Log}_E(P))$$
, (4)

Gyro inverse:
$$\Theta P = -1 \odot P = \operatorname{Exp}_E(-\operatorname{Log}_E(P)),$$
 (5)

Gyration:
$$gyr[P, Q]R = (\ominus(P \oplus Q)) \oplus (P \oplus (Q \oplus R)),$$
 (6)

Gyro inner product:
$$\langle P, Q \rangle_{gr} = \langle \operatorname{Log}_E(P), \operatorname{Log}_E(Q) \rangle_E$$
, (7)

Gyro norm:
$$||P||_{gr} = \langle P, P \rangle_{gr}$$
, (8)

Gyrodistance:
$$d_{gry}(P,Q) = \|\ominus P \oplus Q\|_{gr}$$
, (9)

where E is the gyro identity element, and Log_E and $\langle\cdot,\cdot\rangle_E$ is the Riemannian logarithm and metric at E. A bijection $\omega:G\to G$ is called gyroisometry, if it preserves the gyrodistance

$$d_{gry}(\omega(P), \omega(Q)) = d_{gry}(P, Q). \tag{10}$$

EXAMPLES

Table 2: Gyrogroup properties on several geometries. Related notations are defined in App. C.3.2.

Geometry	Symbol	$P\oplus Q$ or $x\oplus y$	E	$\ominus P$ or $\ominus x$	Lie group	Gyrogroup	References
AIM \mathcal{S}^n_{++}	\oplus^{AI}	$P^{rac{1}{2}}QP^{rac{1}{2}}$	I_n	P^{-1}	×	✓	(Nguyen, 2022b)
LEM \mathcal{S}^n_{++}	\oplus^{LE}	$\operatorname{mexp}(\operatorname{mlog}(P) + \operatorname{mlog}(Q))$	I_n	P^{-1}	✓	✓	(Arsigny et al., 2005) (Nguyen, 2022b) (Lin, 2019)
$\operatorname{LCM} \mathcal{S}^n_{++}$	\oplus^{LC}	$\psi_{\mathrm{LC}}^{-1}(\psi_{\mathrm{LC}}(P) + \psi_{\mathrm{LC}}(Q))$	I_n	$\psi_{\mathrm{LC}}(-\psi_{\mathrm{LC}}(P))$	✓	✓	(Nguyen, 2022b) (Chen et al., 2024d)
$\widetilde{\mathrm{Gr}}(p,n) \ \mathrm{Gr}(p,n)$	$\overset{\widetilde{\oplus}^{\operatorname{Gr}}}{\oplus^{\operatorname{Gr}}}$	$\frac{\operatorname{mexp}(\Omega)Q\operatorname{mexp}(-\Omega)}{\operatorname{mexp}(\Omega)V}$	$\widetilde{I}_{p,n}$ $I_{p,n}$	$\frac{\operatorname{mexp}(-\Omega)\widetilde{I}_{p,n}\operatorname{mexp}(\Omega)}{\operatorname{mexp}(-\Omega)I_{p,n}}$	×	Non-reductive	(Nguyen, 2022a) (Nguyen & Yang, 2023)
\mathcal{M}_K	\oplus_K	$\frac{\left(1 - 2K\langle x, y \rangle - K\ y\ ^2\right)x + \left(1 + K\ x\ ^2\right)y}{1 - 2K\langle x, y \rangle + K^2\ x\ ^2\ y\ ^2}$	0	-x	X (√ for <i>K</i> =0)	✓	(Ungar, 2009) (Ganea et al., 2018) (Skopek et al., 2019)

• Several geometries do not form Lie groups, but gyrogroups.

GYROBN

Construction

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_i^2 + \epsilon}} + \beta$$

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta \qquad \qquad \forall i \leq N, \tilde{P}_i = \underbrace{Biasing}_{Biasing} \left(\underbrace{\frac{Scaling}{s}}_{\sqrt{v^2 + \epsilon}} \odot \left(\underbrace{\Theta M \oplus P_i}_{Centering} \right) \right),$$

Question

- Calculation of the gyro statistics
- Ability to normalize the sample statistics?

24 GyroBN LieBN **GBWMBN** Extension

THEORIES

Slacked Definition

$$\operatorname{gyr}[a,b] = \operatorname{gyr}[a \oplus b,b]$$

Definition 3.1 (Pseudo-reductive Gyrogroups). A groupoid $\{G, \oplus\}$ is a pseudo-reductive gyrogroup if it satisfies axioms (G1), (G2), (G3) and the following pseudo-reductive law:

$$gyr[X, P] = 1$$
, for any left inverse X of P in G, (12)

where 1 is the identity map.

Proposition 3.2. [\downarrow] Gr(p, n) and Gr(p, n) form pseudo-reductive and gyrocommutative gyrogroups.

Results

Proposition 3.6. [\downarrow] For every (pseudo-reductive) gyrogroup in <u>Tab. 2</u>, the gyrodistance is identical to the geodesic distance (therefore symmetric). The gyroinverse, any gyration and any left gyrotranslation are gyroisometries.

Insight:

- Gyro mean and variance

 Riemannian mean and variance
- Gyro operations can normalize sample statistics

THEORIES

Guarantee

Algorithm

Theorem 4.1 (Homogeneity). [\downarrow] Supposing $\{\mathcal{M}, \oplus\}$ is a pseudo-reductive gyrogroup with any gyration gyr $[\cdot, \cdot]$ as a gyroisometry, for N samples $\{P_{i...N} \in \mathcal{M}\}$, we have the following properties:

Homogeneity of gyromean:
$$FM(\{B \oplus P_i\}) = B \oplus FM(\{P_i\}), \forall B \in \mathcal{M},$$
 (16)

Homogeneity of dispersion from
$$E: \frac{1}{N} \sum_{i=1}^{N} d_{\text{gry}}^2(t \odot P_i, E) = \frac{t^2}{N} \sum_{i=1}^{N} d_{\text{gry}}^2(P_i, E),$$
 (17)

Algorithm 1: Gyrogroup Batch Normalization (GyroBN)

Require : batch of activations $\{P_{1...N} \in \mathcal{M}\}$, small positive constant ϵ , and momentum

 $\eta \in [0, 1]$, running mean M_r , running variance v_r^2 , biasing parameter $B \in \mathcal{M}$,

scaling parameter $s \in \mathbb{R}$.

Return : normalized batch $\{\tilde{P}_{1...N} \in \mathcal{M}\}$

1 if training then

Compute batch mean M_b and variance v_b^2 of $\{P_{1...N}\}$;

Update running statistics $M_r = \text{Bar}_{\gamma}(M_b, M_r), v_r^2 = \gamma v_b^2 + (1 - \gamma)v_r^2;$

4 end

s $(M, v^2) = (M_b, v_b^2)$ if training else (M_r, v_r^2)

6 $\forall i \leq N, ilde{P}_i = B \oplus \left(rac{s}{\sqrt{v^2 + \epsilon}} \odot \left(\ominus M \oplus P_i \right) \right)$

Generality: incorporating several previous RBN methods

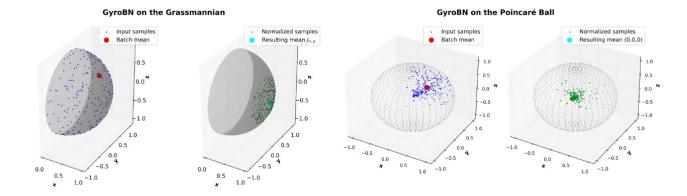
EXPERIMENTS

Table 9: Key operators in calculating GyroBN on the Grassmannian and hyperbolic manifolds. Here $P,Q\in\operatorname{Gr}(p,n)$ are two ONB Grassmannian points, while $x,y\in\mathbb{P}^n_K$ are two Poincaré vectors. Other notations follow from Tabs. 2 and 8.

Instantiations

Operator	$\mathrm{Gr}(p,n)$	\mathbb{P}^n_K
Identity element	$I_{p,n}$	$0 \in \mathbb{R}^n$
$P \oplus^{\operatorname{Gr}} Q$ or $x \oplus_K y$	$\operatorname{mexp}(\Omega)V$	$\frac{\left(1{-}2K\langle x,y\rangle{-}K\ y\ ^2\right)x{+}\left(1{+}K\ x\ ^2\right)y}{1{-}2K\langle x,y\rangle{+}K^2\ x\ ^2\ y\ ^2}$
$\ominus^{\operatorname{Gr}} P$ or $\ominus_K x$	$\operatorname{mexp}(-\Omega)I_{p,n}$	-x
$t\odot^{\operatorname{Gr}} P$ or $t\odot_K x$	$\operatorname{mexp}(t\Omega)I_{p,n}$	$\frac{1}{\sqrt{ K }} \tanh\left(t \tanh^{-1}(\sqrt{ K } x)\right) \frac{x}{ x }$
$\operatorname{Bar}_{\gamma}^{\operatorname{Gr}}(Q,P)$ or $\operatorname{Bar}_{\gamma}^{K}(y,x)$ Fréchet Mean	$\operatorname{Exp}_P^{\operatorname{Gr}}(\gamma\operatorname{Log}_P^{\operatorname{Gr}}(Q))$ Karcher Flow (Karcher, 1977)	$x \oplus_K (-x \oplus_K y) \odot_K t$ (Lou et al., 2020, Alg. 1)

Visualization



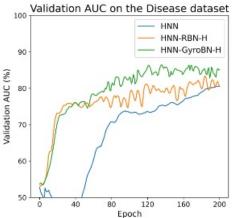
EXPERIMENTS

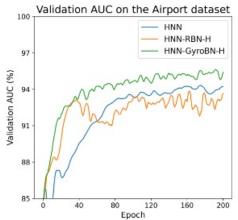
Table 3: Comparison of GyroBN against other Grassmannian BNs under GyroGr backbone.

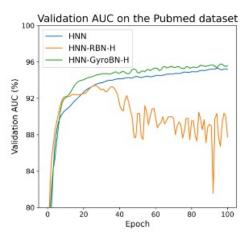
BN	None None		ManifoldNorm-Gr		RBN-Gr		GyroBN-Gr	
Acc.	Mean±std	Max	Mean±std	Max	Mean±std	Max	Mean±std	Max
HDM05 NTU60			49.67±0.76 68.56±0.43				51.89±0.37 72.60±0.04	52.43 72.65
NTU120			51.41±0.38					55.59

Grassmannian

Hyperbolic







III-conditioning

Overwhelming

Dataset	λ	Epochs	$> 10^{2}$	$> 10^{3}$	$> 10^4$	$> 10^5$	$> 10^6$
		1	500 (100%)	399 (79.8%)	195 (39%)	74 (14.8%)	11 (2.2%)
	$1e^{-7}$	100	499 (99.8%)	428 (85.6%)	247 (49.4%)	115 (23%)	16 (3.2%)
		200 (Final)	500 (100%)	458 (91.6%)	274 (100%)	113 (54.8%)	13 (2.6%)
		1	489 (97.8%)	375 (75%)	191 (38.2%)	64 (12.8%)	0 (0%)
	$1e^{-6}$	100	496 (99.2%)	384 (76.8%)	201 (40.2%)	67 (13.4%)	1 (0.2%)
MAMEM-SSVEP-II		200 (Final)	485 (97%)	370 (74%)	202 (40.4%)	71 (14.2%)	1 (0.2%)
		1	498 (99.6%)	379 (75.8%)	163 (32.6%)	24 (4.8%)	1 (0.2%)
	$1\mathrm{e}^{-5}$	100	486 (97.2%)	302 (60.4%)	129 (25.8%)	21 (4.2%)	0 (0%)
		200 (Final)	459 (91.8%)	277 (55.4%)	113 (22.6%)	11 (2.2%)	0 (0%)
		1	404 (80.8%)	194 (38.8%)	99 (19.8%)	4 (0.8%)	0 (0%)
	$1e^{-4}$	100	406 (81.2%)	196 (39.2%)	43 (8.6%)	0 (0%)	0 (0%)
		200 (Final)	403 (80.6%)	205 (41%)	56 (11.2%)	1 (0.2%)	0 (0%)
7 Table 10 Table 1		1	2086 (100%)	2086 (100%)	2086 (100%)	2086 (100%)	2047 (98.1%)
HDM05	$1e^{-6}$	100	2086 (100%)	2086 (100%)	2086 (100%)	2086 (100%)	2039 (97.7%)
		200 (Final)	2086 (100%)	2086 (100%)	2086 (100%)	2086 (100%)	2031 (97.4%)
		1	56,880 (100%)	56,880 (100%)	56,880 (100%)	56,880 (100%)	0 (0%)
NTU RGB+D	$1\mathrm{e}^{-6}$	50	56,880 (100%)	56,880 (100%)	56,880 (100%)	56,880 (100%)	0 (0%)
		100 (Final)	56,880 (100%)	56,880 (100%)	56,880 (100%)	56,880 (100%)	0 (0%)

Table 7. Statistics (quantity and proportion) on the condition number (eig_{max}/eig_{min}) of the SPD features before the RBN layer on different datasets across various values of λ and training epochs.

Wang R, Jin S, Chen Z[†], et al, Learning to Normalize on the SPD Manifold under Bures-Wasserstein Geometry, CVPR 2025

LieBN

30

AIM: quadratic

BWM: linear

Riemannian operators under the BWM

Riemannian metric

$$\begin{array}{lcl} g_{\mathbf{X}_1}^{\mathrm{BW}}(\mathbf{S}_1,\mathbf{S}_2) & = & \frac{1}{2}\mathrm{tr}\left(\mathcal{L}_{\mathbf{X}_1}(\mathbf{S}_1)\mathbf{S}_2\right) \\ & = & \frac{1}{2}\mathrm{vec}(\mathbf{S}_1)^T(\mathbf{X}_1\oplus\mathbf{X}_1)^{-1}\mathrm{vec}(\mathbf{S}_2) \end{array}$$

Riemannian distance

$$d_{\mathrm{BW}}^2(\mathbf{X}_1,\mathbf{X}_2) = \mathrm{tr}(\mathbf{X}_1) + \mathrm{tr}(\mathbf{X}_2) - 2\left(\mathrm{tr}\left(\mathbf{X}_1^{\frac{1}{2}}\mathbf{X}_2\mathbf{X}_1^{\frac{1}{2}}\right)\right)^{\frac{1}{2}}$$

Riemannian geodesic

$$\gamma_{\mathbf{X}_1,\mathbf{S}_1}(t) = \mathbf{X}_1 + t\mathbf{S}_1 + t^2\mathcal{L}_{\mathbf{X}_1}(\mathbf{S}_1)\mathbf{X}_1\mathcal{L}_{\mathbf{X}_1}(\mathbf{S}_1)$$

Riemannian exponential map

$$\mathrm{Exp}_{\mathbf{X}_1}\mathbf{S}_1 = \mathbf{X}_1 + \mathbf{S}_1 + \mathcal{L}_{\mathbf{X}_1}(\mathbf{S}_1)\mathbf{X}_1\mathcal{L}_{\mathbf{X}_1}(\mathbf{S}_1)$$

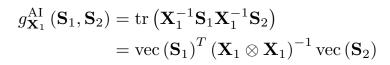
Riemannian logarithmic map

$$\text{Log}_{\mathbf{X}_1} \mathbf{X}_2 = (\mathbf{X}_2 \mathbf{X}_1)^{\frac{1}{2}} + (\mathbf{X}_1 \mathbf{X}_2)^{\frac{1}{2}} - 2 \mathbf{X}_1$$

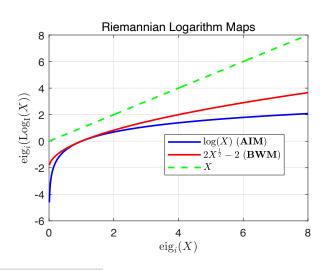
Parallel Transport

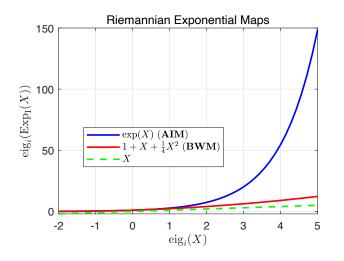
$$\Gamma_{\mathbf{X}_1 \rightarrow \mathbf{X}_2}(\mathbf{S}) = \mathbf{U} \left[\sqrt{\frac{\delta_i + \delta_j}{\lambda_i + \lambda_j}} \left[\mathbf{S'} \right]_{i,j} \right]_{i,j} \mathbf{U}^T$$

Table 3. Basic operators based on the BWM.



$$g_{\mathbf{X}}^{\mathrm{BW}}(\mathbf{S}_{1}, \mathbf{S}_{2}) = \frac{1}{2} \operatorname{tr} \left(\mathcal{L}_{\mathbf{X}} \left(\mathbf{S}_{1} \right) \mathbf{S}_{2} \right)$$
$$= \frac{1}{2} \operatorname{vec} \left(\mathbf{S}_{1} \right)^{T} \left(\mathbf{X} + \mathbf{X} \right)^{-1} \operatorname{vec} \left(\mathbf{S}_{2} \right)$$





Construction

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

Centering:
$$\bar{\mathbf{X}}_i = \widetilde{\mathrm{Exp}}_{\mathbf{I}_d} \left(\widetilde{\Gamma}_{\mathcal{B} \to \mathbf{I}_d} \left(\widetilde{\mathrm{Log}}_{\mathcal{B}} \left(\mathbf{X}_i \right) \right) \right)$$
, (19)

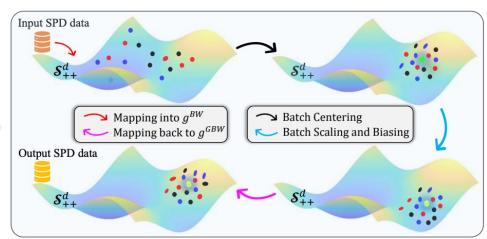
Scaling:
$$\check{\mathbf{X}}_i = \widetilde{\mathrm{Exp}}_{\mathbf{I}_d}(\frac{\mathbf{S}}{\sqrt{\boldsymbol{\nu}^2 + \boldsymbol{\epsilon}}}(\widetilde{\mathrm{Log}}_{\mathbf{I}_d}(\bar{\mathbf{X}}_i))),$$
 (20)

Biasing:
$$\tilde{\mathbf{X}}_i = \widetilde{\mathrm{Exp}}_{\boldsymbol{\mathcal{G}}} \left(\widetilde{\Gamma}_{\mathbf{I}_d \to \boldsymbol{\mathcal{G}}} \left(\widetilde{\mathrm{Log}}_{\mathbf{I}_d} (\check{\mathbf{X}}_i) \right) \right),$$
 (21)

Simplification

$$g_X^{\text{BW}}(S_1, S_2) = \frac{1}{2} \text{tr} \left(\mathcal{L}_M(S_1) S_2 \right)$$

$$g_X^{\text{GBW}}(S_1, S_2) = \frac{1}{2} \text{tr} \left(\mathcal{L}_{X,M}(S_1) S_2 \right)$$



Power-deformed generalized BWM is simplified by Riemannian isometries

EEG

Models	Acc. (%)
EEGNet [34]	53.72 ± 7.23
ShallowConvNet [50]	56.93 ± 6.97
SCCNet [57]	62.11 ± 7.70
EEG-TCNet [28]	55.45 ± 7.66
FBCNet [37]	53.09 ± 5.67
TCNet-Fusion [40]	45.00 ± 6.45
MBEEGSE [1]	56.45 ± 7.27
SPDNet [27]	62.30 ± 3.12
SPDNet-BN(m) [7]	62.76 ± 3.01
SPDNet-BN(m+v) [33]	60.60 ± 3.57
SPDNet-Manifoldnorm [8]	62.08 ± 3.56
SPDNet-LieBN [14]	60.15 ± 3.42
SPDNet-GBWBN-($\theta = 1$)	$\textbf{65.47} \pm \textbf{3.33}$

Table 4. Accuracy comparison on the MAMEM-SSVEP-II dataset.

RResNet

Models	HD	OM05	NTU RGB+D		
NIOGOIS	Acc. (%)	Time (s/epoch)	Acc. (%)	Time (s/epoch)	
RResNet [31]	61.09 ± 0.60	3.62	52.54 ± 0.59	359.25	
RResNet-BN (m) [7]	63.31 ± 0.61	4.49	53.86 ± 1.19	478.62	
RResNet-BN (m+v) [33]	64.51 ± 1.00	6.65	53.94 ± 1.28	546.15	
RResNet-Manifoldnorm [8]	63.07 ± 0.80	6.24	53.50 ± 0.46	531.48	
RResNet-LieBN [14]	66.43 ± 0.92	5.52	54.74 ± 0.75	523.19	
RResNet-GBWBN- $(\theta = 1)$	62.01 ± 1.23	8.21	59.45 ± 0.38	563.47	
RResNet-GBWBN-($\theta = 0.5$)	$\textbf{69.10} \pm \textbf{0.83}$	8.21	$\textbf{59.72} \pm \textbf{0.31}$	563.47	

Table 5. Accuracy comparison of different methods on the HDM05 and NTU RGB+D datasets.

Limitation

• Fail to normalize sample mean

Centering:
$$\widetilde{\mathbf{X}}_{i} = \widetilde{\mathrm{Exp}}_{\mathbf{I}_{d}} \left(\widetilde{\Gamma}_{\mathcal{B} \to \mathbf{I}_{d}} \left(\widetilde{\mathrm{Log}}_{\mathcal{B}} \left(\mathbf{X}_{i} \right) \right) \right), \quad (19)$$

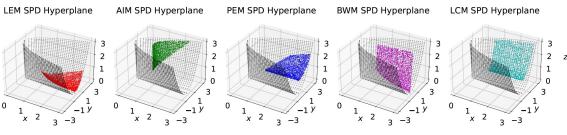
Scaling: $\widetilde{\mathbf{X}}_{i} = \widetilde{\mathrm{Exp}}_{\mathbf{I}_{d}} \left(\frac{\mathbf{s}}{\sqrt{\nu^{2} + \epsilon}} (\widetilde{\mathrm{Log}}_{\mathbf{I}_{d}} (\overline{\mathbf{X}}_{i})) \right), \quad (20)$

Biasing: $\widetilde{\mathbf{X}}_{i} = \widetilde{\mathrm{Exp}}_{\mathcal{G}} \left(\widetilde{\Gamma}_{\mathbf{I}_{d} \to \mathcal{G}} \left(\widetilde{\mathrm{Log}}_{\mathbf{I}_{d}} (\overline{\mathbf{X}}_{i}) \right) \right), \quad (21)$

Solution

Invariance (in progress)

Overview: Riemannian Multinomial Logistics Regression

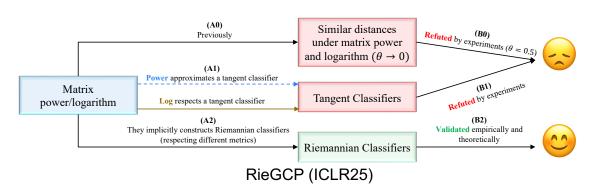


2 2 0 7 -2 -4 -2 0 9 y

Figure 2: Conceptual illustration of SPD hyperplanes induced by five families of Riemannian metrics. The black dots denote the boundary of S_{++}^2 .

Figure 3: Conceptual illustration of a Lie hyperplane. Each pair of antipodal black dots corresponds to a rotation marrix with an Euler angle of π , while the green dots denote a Lie hyperplane.

Flat MLR (CVPR24) ⇒ RMLR (NeurlPS24)



Chen Z, et al. RMLR: Extending Multinomial Logistic Regression into General Geometries. NeurIPS 2024

Chen Z, et al. Understanding matrix function normalizations in covariance pooling through the lens of Riemannian geometry. ICLR 2025

RIEMANNIAN MULTINOMIAL LOGISTICS REGRESSION

Euclidean

$$y = Ax + b$$

SPD

$$\forall k \in \{1, \dots, C\}, p(y = k \mid x) \propto \exp\left(\left(\langle a_k, x \rangle - b_k\right)\right)$$

Margin distance to hyperplane

$$p(y = k \mid x) \propto \exp(\operatorname{sign}(\langle a_k, x - p_k \rangle) ||a_k|| d(x, H_{a_k, p_k}))$$

$$H_{a_k,p_k} = \{ x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0 \}$$

Definition 3.1 (SPD hyperplanes). Given $P \in \mathcal{S}_{++}^n$, $A \in T_P \mathcal{S}_{++}^n \setminus \{0\}$, we define the SPD hyperplane as

$$\tilde{H}_{A,P} = \{ S \in \mathcal{S}_{++}^n : g_P(\operatorname{Log}_P S, A) = \langle \operatorname{Log}_P S, A \rangle_P = 0 \}, \tag{12}$$

where P and A are referred to as shift and normal matrices, respectively.

Definition 3.2 (SPD MLR). SPD MLR is defined as

$$p(y = k \mid S) \propto \exp(\operatorname{sign}(\langle A_k, \operatorname{Log}_{P_k}(S) \rangle_{P_k}) \|A_k\|_{P_k} d(S, \tilde{H}_{A_k, P_k})), \tag{13}$$

where $P_k \in \mathcal{S}_{++}^n$, $A_k \in T_{P_k} \mathcal{S}_{++}^n \setminus \{0\}$, $\langle \cdot, \cdot \rangle_{P_k} = g_{P_k}$, and $\|\cdot\|_{P_k}$ is the norm on $T_{P_k} \mathcal{S}_{++}^n$ induced by g at P_k , and \tilde{H}_{A_k,P_k} is a margin hyperplane in \mathcal{S}_{++}^n as defined in Eq. (12). $d(S, \hat{H}_{A_k, P_k})$ denotes the margin distance between S and SPD hyperplane H_{A_h,P_h} , which is formulated as:

$$d(S, \tilde{H}_{A_k, P_k})) = \inf_{Q \in \tilde{H}_{A_k, P_k}} d(S, Q), \tag{14}$$

where d(S,Q) is the geodesic distance induced by q.

RieGCP

MANIFESTATION

Flat Geom.

SPD

Question

Lemma 3.5. Given a PEM g, the margin distance defined in Eq. (14) has a closed-form solution:

$$d(S, \tilde{H}_{A_k, P_k})) = d(\phi(S), H_{\phi_{*, P_k}(A_k), \phi(P_k)}), \tag{15}$$

$$=\frac{\left|\left\langle\phi(S)-\phi(P_k),\phi_{*,P_k}(A_k)\right\rangle\right|}{\|A_k\|_{P_k}},\tag{16}$$

where $|\cdot|$ is the absolute value.

Theorem 3.8 (SPD MLR under a PEM). Under any PEM, SPD MLR and SPD hyperplane is

$$p(y = k \mid S) \propto \exp(\langle \phi(S) - \phi(P_k), \phi_{*,I}(\tilde{A}_k) \rangle),$$
 (19)

$$\tilde{H}_{\tilde{A}_{k}, P_{k}} = \{ S \in \mathcal{S}_{++}^{n} : \langle \phi(S) - \phi(P_{k}), \phi_{*, I}(\tilde{A}_{k}) \rangle = 0 \}, \tag{20}$$

where $\tilde{A}_k \in T_I \mathcal{S}_{++}^n/\{0\} \cong \mathcal{S}^n/\{0\}$ is a symmetric matrix, and $P_k \in \mathcal{S}_{++}^n$ is an SPD matrix.

Corollary 4.1 (SPD MLRs under the deformed LEM and LCM). The SPD MLRs under (α, β) -LEM is

$$p(y = k \mid S) \propto \exp\left[\langle \text{mlog}(S) - \text{mlog}(P_k), \tilde{A}_k \rangle^{(\alpha, \beta)}\right],$$
 (21)

where $\tilde{A}_k \in T_I \mathcal{S}_{++}^n \cong \mathcal{S}^n$ and $P_k \in \mathcal{S}_{++}^n$. The SPD MLRs under (θ) -LCM is

$$p(y = k \mid S) \propto \exp\left[\frac{1}{\theta} \langle \lfloor \tilde{K} \rfloor - \lfloor \tilde{L}_k \rfloor + \left[\operatorname{Dlog}(\mathbb{D}(\tilde{K})) - \operatorname{Dlog}(\mathbb{D}(\tilde{L}_k)) \right], \lfloor \tilde{A}_k \rfloor + \frac{1}{2} \mathbb{D}(\tilde{A}_k) \rangle \right], \tag{22}$$

where $\tilde{K} = \operatorname{Chol}(S^{\theta})$, $\tilde{L}_k = \operatorname{Chol}(P_k^{\theta})$, and $\mathbb{D}(\tilde{A}_k)$ denotes a diagonal matrix with diagonal elements of \tilde{A}_k .

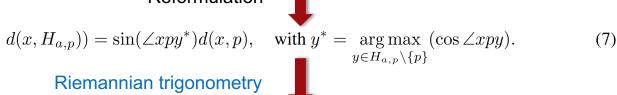
What about in other geometries?

REFORMULATION BY RIEMANNIAN TRIGONOMETRY

$$p(y = k \mid x) \propto \exp\left(\operatorname{sign}(\langle a_k, x - p_k \rangle) \|a_k\| d(x, H_{a_k, p_k})\right),$$

$$H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\},$$

Reformulation



Definition 3.1 (Riemannian Margin Distance). Let $H_{\tilde{A},P}$ be a Riemannian hyperplane defined in Eq. (5), and $S \in \mathcal{M}$. The Riemannian margin distance from S to $H_{\tilde{A},P}$ is defined as

$$d(S, \tilde{H}_{\tilde{A}, P}) = \sin(\angle SPY^*) d(S, P), \tag{8}$$

where d(S, P) is the geodesic distance, and $Y^* = \operatorname{argmax}(\cos \angle SPY)$ with $Y \in \tilde{H}_{\tilde{A}, P} \setminus \{P\}$. The initial velocities of geodesics define $\cos \angle SPY$:

$$\cos \angle SPY = \frac{\langle \operatorname{Log}_{P} Y, \operatorname{Log}_{P} S \rangle_{P}}{\|\operatorname{Log}_{P} Y\|_{P}, \|\operatorname{Log}_{P} S\|_{P}},\tag{9}$$

where $\langle \cdot, \cdot \rangle_P$ is the Riemannian metric at P, and $\| \cdot \|_P$ is the associated norm.

SPDMLR

FROM FLAT METRICS TO GENERAL GEOMETRIES

Margin Distance

MLR

Generality

Theorem 3.2. $[\downarrow]$ *The Riemannian margin distance defined in Def.* 3.1 *is given as*

$$d(S, \tilde{H}_{\tilde{A}, P}) = \frac{|\langle \operatorname{Log}_{P} S, \tilde{A} \rangle_{P}|}{\|\tilde{A}\|_{P}}.$$
(10)

Putting the Eq. (10) into Eq. (4), we can a closed-form expression for Riemannian MLR.

Theorem 3.3 (RMLR). [\downarrow] Given a Riemannian manifold $\{M, g\}$, the Riemannian MLR induced by g is

$$p(y = k \mid S \in \mathcal{M}) \propto \exp\left(\langle \operatorname{Log}_{P_k} S, \tilde{A}_k \rangle_{P_k}\right),$$
 (11)

where $P_k \in \mathcal{M}$, $\tilde{A}_k \in T_{P_k} \mathcal{M} \setminus \{\mathbf{0}\}$, and Log is the Riemannian logarithm.

Table 1: Several MLRs on different geometries are special cases of our MLR.

Geometries	Requirements	Incorporated by Our MLR
Euclidean geometry	N/A	√ (App. C)
AIM, LEM & LCM on \mathcal{S}^n_{++}	Gyro structures	√ (Rem. 4.3)
SPSD product gyro spaces	Gyro structures	✓(App. D)
(α,β) -LEM & (θ) -LCM on \mathcal{S}^n_{++}	Pullback metrics from the Euclidean space	√ (Rem. 4.3)
General Geometries	Riemannian logarithm	N/A
	Euclidean geometry AIM, LEM & LCM on \mathcal{S}^n_{++} SPSD product gyro spaces (α, β) -LEM & (θ) -LCM on \mathcal{S}^n_{++}	Euclidean geometry N/A AIM, LEM & LCM on S_{++}^n Gyro structures SPSD product gyro spaces Gyro structures (α, β) -LEM & (θ) -LCM on S_{++}^n Pullback metrics from the Euclidean space

MANIFESTATIONS

SPD MLR

Theorem 4.2 (SPD MLRs). $[\downarrow]$ By abuse of notation, we omit the subscripts k of A_k and P_k . Given SPD feature S, the SPD MLRs, $p(y = k \mid S \in S_{++}^n)$, are proportional to

$$(\alpha, \beta)\text{-}LEM : \exp\left[\langle \log(S) - \log(P), A \rangle^{(\alpha, \beta)}\right], \tag{16}$$

$$(\theta, \alpha, \beta) - AIM : \exp\left[\frac{1}{\theta} \langle \log(P^{-\frac{\theta}{2}} S^{\theta} P^{-\frac{\theta}{2}}), A \rangle^{(\alpha, \beta)}\right], \tag{17}$$

$$(\theta, \alpha, \beta) - EM : \exp\left[\frac{1}{\theta} \langle S^{\theta} - P^{\theta}, A \rangle^{(\alpha, \beta)}\right], \tag{18}$$

$$\theta\text{-}LCM: \exp\left[\frac{1}{\theta}\langle \lfloor \tilde{K} \rfloor - \lfloor \tilde{L} \rfloor + \left[\operatorname{Dlog}(\mathbb{D}(\tilde{K})) - \operatorname{Dlog}(\mathbb{D}(\tilde{L}))\right], \lfloor A \rfloor + \frac{1}{2}\mathbb{D}(A)\rangle\right], \quad (19)$$

$$2\theta - BWM : \exp\left[\frac{1}{4\theta} \langle (P^{2\theta} S^{2\theta})^{\frac{1}{2}} + (S^{2\theta} P^{2\theta})^{\frac{1}{2}} - 2P^{2\theta}, \mathcal{L}_{P^{2\theta}}(\bar{L}A\bar{L}^{\top})\rangle\right],\tag{20}$$

where $A \in T_I \mathcal{S}^n_{++} \setminus \{0\}$ is a symmetric matrix, $\log(\cdot)$ is the matrix logarithm, $\mathcal{L}_P(V)$ is the solution to the matrix linear system $\mathcal{L}_P[V]P + P\mathcal{L}_P[V] = V$, known as the Lyapunov operator, $\operatorname{Dlog}(\cdot)$ is the diagonal element-wise logarithm, $\lfloor \cdot \rfloor$ is the strictly lower part of a square matrix, and $\mathbb{D}(\cdot)$ is a diagonal matrix with diagonal elements of a square matrix. Besides, $\log_{*,P}$ is the differential maps at P, $\tilde{K} = \operatorname{Chol}(S^\theta)$, $\tilde{L} = \operatorname{Chol}(P^\theta)$, and $\tilde{L} = \operatorname{Chol}(P^{2\theta})$.

Lie MLR

Theorem 5.2. [
$$\downarrow$$
] The Lie MLR on $SO(n)$ is given as

$$p(y = k \mid R \in SO(n)) \propto \langle \log(P_k^{\top} S), A_k \rangle,$$
 (22)

where $P_k \in SO(n)$ and $A_k \in \mathfrak{so}(n)$.

RESULTS

Riem. FFNN

Riem. GCN

RResNet

Table 4: Comparison of SPDNet with LogEig against SPD MLRs on the HDM05 dataset.

		(θ, α, β) -AIM	$ $ $(\theta, \alpha,$	β)-EM	(α, β) -LEM	2θ-BWM	θ-L	CM
Architectures	LogEig MLR	(1,1,0)	(1,1,0)	(0.5, 1.0, 1/30)	(1,1,0)	(0.5)	(1)	(0.5)
1-Block 2-Block 3-Block	57.42±1.31 60.69±0.66 60.76±0.80	58.07±0.64 60.72±0.62 61.14±0.94	66.32±0.63 66.40±0.87 66.70±1.26	71.65±0.88 70.56±0.39 70.22±0.81	56.97±0.61 60.69±1.02 60.28±0.91	70.24±0.92 70.46±0.71 70.20±0.91	63.84±1.31 62.61±1.46 62.33±2.15	65.66±0.73 65.79±0.63 65.71±0.75

Table 8: Comparison of LogEig against SPD MLRs under the SPDGCN architecture.

Classifiers	Disease	•	Cora		Pubmed		
GIABBINIO18	Mean±STD	Max	Mean±STD	Max	Mean±STD	Max	
LogEig MLR	90.55 ± 4.83	96.85	78.04 ± 1.27	79.6	70.99 ± 5.12	77.6	
(θ, α, β) -AIM	94.84 ± 2.27	98.43	79.79 ± 1.44	81.6	77.83 ± 1.08	80	
(θ, α, β) -EM	90.87 ± 5.14	98.03	79.05 ± 1.23	81	78.16 ± 2.41	79.5	
(α, β) -LEM	96.33 ± 2.19	98.82	79.89 ± 0.99	81.8	78.16 ± 2.41	79.5	
2θ -BWM	91.93 ± 3.64	96.85	73.46 ± 2.18	77.7	73.22 ± 4.06	78.1	
θ -LCM	93.01 ± 2.14	98.43	77.59 ± 1.20	80.1	74.46 ± 5.81	78.9	

Table 7: Comparison of LogEig against SPD MLRs under the RResNet architecture.

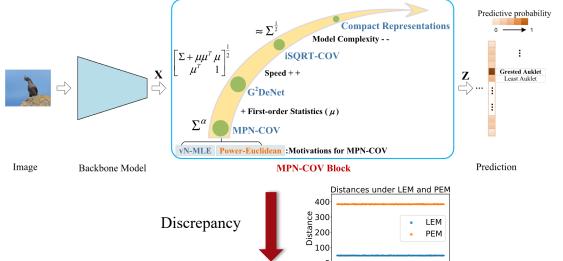
Datasets	LogEigMLR	(θ, α, β) -AIM	(θ, α, β) -EM	(α, β) -LEM	2θ-BWM	θ-LCM
	58.17 ± 2.07 45.22 ± 1.23	60.23 ± 1.26 48.94 ± 0.68	71.89 ± 0.60 († 13.72) 52.24 ± 1.25			65.76 ± 0.96 $53.63 \pm 0.95 (\uparrow 8.41)$

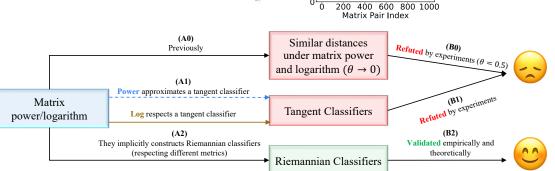
Table 10: Results of LogEig MLR against Lie MLR under the LieNet architecture.

Classifiers	G3D		HDM05	
C14653111C15	Mean±STD	Max	Mean±STD	Max
LogEig MLR Lie MLR	87.91±0.90 89.13±1.7	89.73 92.12	76.92±1.27 78.24±1.03	79.11 80.25

UNDERSTANDING MATRIX FUNCTIONS IN GCP

Typical GCP





Explanation

SPDMLR

PRELIMINARIES

Seven power-deformed metrics on SPD the manifold.

Name	Riemannian Metric $g_P(V, W)$	Riemannian Logarithm $\operatorname{Log}_P Q$	Deformation $(\theta \neq 0)$
(α, β) -LEM (Thanwerdas & Pennec, 2023)	$\langle \mathrm{mlog}_{*,P}(V), \mathrm{mlog}_{*,P}(W) \rangle^{(\alpha,\beta)}$	$(\mathrm{mlog}_{*,P})^{-1} \left[\mathrm{mlog}(Q) - \mathrm{mlog}(P)\right]$	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{(\alpha,\beta)\text{-LE}}$
(α, β) -AIM (Thanwerdas & Pennec, 2023)	$\langle P^{-1}V,WP^{-1}\rangle^{(\alpha,\beta)}$	$P^{1/2} \operatorname{mlog} \left(P^{-1/2} Q P^{-1/2} \right) P^{1/2}$	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{(\alpha,\beta)\text{-AI}}$
(α, β) -EM (Thanwerdas & Pennec, 2023)	$\langle V, W \rangle^{(\alpha,\beta)}$	Q-P	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{(\alpha,\beta)-E}$
(θ_1, θ_2) -EM (Thanwerdas & Pennec, 2022)	$\frac{1}{\theta_1\theta_2}\langle \operatorname{Pow}_{\theta_1*,P}(V), \operatorname{Pow}_{\theta_2*,P}(W)\rangle$	$(\operatorname{Pow}_{\theta*,P})^{-1}(Q^{\theta}-P^{\theta})$, with $\theta=(\theta_1+\theta_2)/2$	N/A
LCM (Lin, 2019)	$\sum_{i>j} \tilde{V}_{ij} \tilde{W}_{ij} + \sum_{j=1}^{n} \tilde{V}_{jj} \tilde{W}_{jj} L_{jj}^{-2}$	$(\operatorname{Chol}^{-1})_{*,L} \left[\lfloor K \rfloor - \lfloor L \rfloor + \mathbb{D}(L) \operatorname{Dlog}(\mathbb{D}(L)^{-1}\mathbb{D}(K)) \right]$	$\frac{1}{\theta^2} \operatorname{Pow}_{\theta}^* g^{\operatorname{LC}}$
BWM (Bhatia et al., 2019)	$\frac{1}{2}\langle \mathcal{L}_P[V], W \rangle$	$(PQ)^{1/2} + (QP)^{1/2} - 2P$	$\frac{1}{4\theta^2} \operatorname{Pow}_{2\theta}^* g^{\mathrm{BW}}$
GBWM (Han et al., 2023)	$rac{1}{2}\langle \mathcal{L}_{P,M}[V],W angle$	$M (M^{-1}PM^{-1}Q)^{1/2} + (QM^{-1}PM^{-1})^{1/2} M - 2P$	$\frac{1}{4\theta^2} \operatorname{Pow}_{2\theta}^* g^{M\text{-BW}}$

Matrix logarithm and power:

Log-EMLR: softmax $(\mathcal{F}(f_{\text{vec}}(\text{mlog}(S)); A, b))$,

Pow-EMLR: softmax $\left(\mathcal{F}\left(f_{\text{vec}}\left(S^{\theta}\right);A,b\right)\right)$,

SPDMLR

TANGENT PERSPECTIVE

Motivation

Matrix logarithm as the Riem. log

Table 2: Log_I under seven families of metrics. $\theta_0 = \frac{\theta_1 + \theta_2}{2}$ for (θ_1, θ_2) -EM, $\theta_0 = \theta$ for (θ, α, β) -EM and 2θ -BWM, and $(2\theta, \phi_{2\theta}(P))$ -BWM.

Riem. log

Metric	$\operatorname{Log}_I P$	Metric	$\operatorname{Log}_I P$
(α, β) -LEM (θ, α, β) -AIM	$\mathrm{mlog}(P)$	$ \begin{bmatrix} (\theta, \alpha, \beta)\text{-EM} \\ (\theta_1, \theta_2)\text{-EM} \end{bmatrix}$	$rac{1}{ heta_0}(P^{ heta_0}-I)$
θ-LCM	$rac{1}{ heta} \left[\lfloor ilde{L} floor + \lfloor ilde{L} floor^ op + 2\operatorname{Dlog}(\mathbb{D}(ilde{L})) ight]$	$oxed{2 heta ext{-BWM}} (2 heta, P^{2 heta}) ext{-BWM}$	θ_0 (1 1)

Table 3: Results of GCP on the ImageNet-1k and Cars datasets with Pow-TMLR or Pow-EMLR under the architecture of ResNet-18.

Refuted

	ImageNet-1k		Cars	
Method	Top-1 Acc (%)	Top-5 Acc (%)	Top-1 Acc (%)	Top-5 Acc (%)
Pow-TMLR Pow-EMLR	71.62 73	89.73 90.91	51.14 80.43	74.29 94.15

RIEMANNIAN PERSPECTIVE

Motivation

Matrix logarithm implicitly construct an SPD MLR (CVPR24)

SPD MLR

LEM-based: $\exp\left[\langle \log(S) - \log(P_k), A_k \rangle\right],$

PEM-based: $\exp\left[\frac{1}{\theta}\langle S^{\theta}-P_{k}^{\theta},A_{k}
angle\right],$

RMLR

Theorem 2. [\downarrow] Under PEM with $\theta > 0$, optimizing each SPD parameter P_k in Eq. (16) by PEM-based RSGD and Euclidean parameter A_k by Euclidean SGD, the PEM-based SPD MLR is equivalent to a Euclidean MLR illustrated in Eq. (10) in the co-domain of $\phi_{\theta}(\cdot): \mathcal{S}_{++}^n \to \mathcal{S}_{++}^n$, defined as

$$\phi_{\theta}(S) = \frac{1}{\theta} S^{\theta}, \theta > 0, \forall S \in \mathcal{S}_{++}^{n}. \tag{17}$$

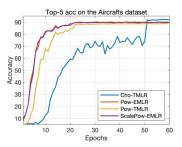
Log-EMLR Pow-EMLR ScalePow-EMLR Pow-TMLR Cho-TMLR $f_{s}\left(\mathcal{F}\left(f_{\text{vec}}\left(S^{\theta}\right)\right)\right)$ $(\theta > 0)$ $f_{s}\left(\mathcal{F}\left(f_{\text{vec}}\left(\frac{1}{\theta}S^{\theta}\right)\right)\right)$ $(\theta > 0)$ $f_{\rm s}\left(\mathcal{F}\left(f_{\rm vec}\left(\frac{1}{\theta_0}(S^{\theta_0}-I)\right)\right)\right)$ $f_{\mathrm{s}}\left(\mathcal{F}\left(f_{\mathrm{vec}}\left(\tilde{V}\right)\right)\right)$ Expression $f_{\rm s}\left(\mathcal{F}\left(f_{\rm vec}\left({
m mlog}(S)\right)\right)\right)$ SPD MLR Tangent Classifier Explanation SPD MLR SPD MLR Tangent Classifier (θ, α, β) -EM, (θ_1, θ_2) -EM, θ -LCM Metrics LEM $(\theta, 1, 0)$ -EM $(\theta, 1, 0)$ -EM 2θ -BWM, $(2\theta, \phi_{2\theta}(S))$ -BWM Used in GCP **√**(Eq. (4)) Х Х Х $(\theta = 0.5 \text{ in Eq. (5)})$ (Chen et al., 2024a, Prop. 5.1) Tab. 2 Tab. 2 Reference Thm. 2 Thm. 2

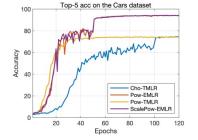
Comparison

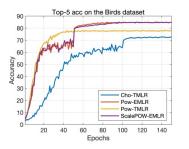
EXPERIMENTS

Table 5: Results of iSQRT-COV on four datasets with different covariance matrix classifiers. The backbone network on ImageNet is ResNet-18, while the one on the other three FGVC datasets is ResNet-50. Power is set to be 1/2 for Pow-TMLR, ScalePow-EMLR and Pow-EMLR.

ImageNet-1k Aircrafts Birds Cars Classifier Top-1 Acc (%) Top-5 Acc (%) Cho-TMLR N/A N/A 78.97 91.81 72.59 51.06 74.29 Pow-TMLR 71.62 89.73 69.58 88.68 52.97 77.80 51.14 94.07 72.43 90.44 71.05 89.86 63.48 84.69 80.31 ScalePow-EMLR 63.29 80.43 94.15 Pow-EMLR 73 90.91 72.07 89.83 84.66







(a) Results of different powers under the ResNet-50.

	Aircrafts		Cars	
Classifier	Top-1 Acc (%)	Top-5 Acc (%)	Top-1 Acc (%)	Top-5 Acc (%)
Pow-TMLR-0.25	65.41	86.71	41.47	66.66
ScalePow-EMLR-0.25	72.76	90.31	61.78	84.04
Pow-EMLR-0.25	71.47	90.04	62.88	84.14
Pow-TMLR-0.5	67.9	88.75	55.01	77.95
ScalePow-EMLR-0.5	74.29	91.12	62.42	84.82
Pow-EMLR-0.5	74.17	91.21	62.83	84.85
Pow-TMLR-0.7	65.92	87.49	50.68	74.12
ScalePow-EMLR-0.7	74.26	91.15	64.22	83.67
Pow-EMLR-0.7	74.17	90.49	61.41	82.39

(b) Results under the AlexNet.

Dataset	Result	Pow-TMLR	Pow-EMLR
Aircrafts	Top-1 Acc (%)	38.01	65.02
	Top-5 Acc (%)	74.4	87.79
Cars	Top-1 Acc (%)	28.57	59.13
	Top-5 Acc (%)	59.51	82.04

Ablations

Results

45

Thanks!

